《具有相反意义的量》初中数学教案
教学目标:
1、知识与技能
(1)通过实例,感受引入负数的必要性和合理性,能应用正负数表示生活中具有相反意义的量。
(2)理解有理数的意义,体会有理数应用的广泛性。
2、过程与方法
通过实例的引入,认识到负数的产生是来源于生产和生活,会用正、负数表示具有相反意义的量,能按要求对有理数进行分类。
重点、难点:
1、重点:正数、负数有意义,有理数的意义,能正确对有理数进行分类。
2、难点:对负数的理解以及正确地对有理数进行分类。
教学过程:
一、创设情景,导入新课
大家知道,数学与数是分不开的,现在我们一起来回忆一下,小学里已经学过哪些类型的数?
学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.
为了表示一个人、两只手、……,我们用到整数1,2,……
为了表示“没有人”、“没有羊”、……,我们要用到0.
但在实际生活中,还有许多量不能用上述所说的自然数、零或分数、小数表示。
二、合作交流,解读探究
1、某市某一天的最高温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚 ……此处隐藏935个字……
三、应用迁移,巩固提高
例 下列给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有理数?-8.4,22,+ ,0.33,0,- ,-9
练1 判断下列各题是否是相反意义的量,(1) 上升和下降(2) 运进货物100吨和下降100米,(3)向东走10米与向西走1米
2 (1) 收入10万元,记作:+10万元,支出1000元记作______.
(2) 水位升高1.2米,记作+1.2米,那么-3.0米表示_________.
3 下列说法正确的是( )
A 正数、零、负数统称为有理数。 B 分数、整数统称为有理数。
C 正有理数、负有理数统称为有理数。D 以上都不对
4 已知:1, 、 、 0, -37、0.2, % ,-0.01,-20%, , ,其中整数有______________,
负分数有__________________.
5 北京与巴黎两地时差是-7(带正号的数表示同一时刻比北京早的时间数),如果现在北京时间是7:00,那么巴黎的时间是_________下午2:00
课堂练习:课本P5练习
四、总结反思
引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?
由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数。正数是大于0的数,负数就是在正数前面加上“-”号的数,负数小于0。0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃。
五、课后作业:课本P5习题1.1A第1、2、3、4、5题。