二次函数的图象和性质数学教案

时间:2023-08-20 23:38:31
二次函数的图象和性质数学教案

二次函数的图象和性质数学教案

教学目标

【知识与技能】

使学生会用描点法画出函数y=ax2的图象,理解并掌握抛物线的有关概念及其性质.

【过程与方法】

使学生经历探索二次函数y=ax2的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力.

【情感、态度与价值观】

使学生经历探索二次函数y=ax2的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质.

重点难点

【重点】

使学生理解抛物线的有关概念及性质,会用描点法画出二次函数y=ax2的图象.

【难点】

用描点法画出二次函数y=ax2的图象以及探索二次函数的性质.

教学过程

一、问题引入

1.一次函数的图象是什么?反比例函数的图象是什么?

(一次函数的图象是一条直线,反比例函数的图象是双曲线.)

2.画函数图象的一般步骤是什么?

一般步骤:(1)列表(取几组x,y的对应值);(2)描点(根据表中x,y的数值在坐标平面中描点(x,y));(3)连线(用平滑曲线).

3.二次函数的图象是什么形状?二次函数有哪些性质?

(运用描点法作二次函数的图象,然后观察、分析并归纳得到二次函数的性质.)

二、新课教授

【例1 ……此处隐藏613个字……2

6.在同一坐标系中,图象与y=2x2的图象关于x轴对称的是()

A.y=x2B.y=x2

C.y=-2x2 D.y=-x2

【答案】C

7.抛物线y=4x2、y=-2x2、y=x2的图象,开口最大的是()

A.y=x2 B.y=4x2

C.y=-2x2 D.无法确定

【答案】A

8.对于抛物线y=x2和y=-x2在同一坐标系中的位置,下列说法错误的是()

A.两条抛物线关于x轴对称

B.两条抛物线关于原点对称

C.两条抛物线关于y轴对称

D.两条抛物线的交点为原点

【答案】C

四、课堂小结

1.二次函数y=ax2的图象过原点且关于y轴对称,自变量x的取值范围是一切实数.

2.二次函数y=ax2的性质:抛物线y=ax2的对称轴是y轴,顶点是原点.当a0时,抛物线y=x2开口向上,顶点是抛物线的最低点,当a越大时,抛物线的开口越小;当a0时,抛物线y=ax2开口向下,顶点是抛物线的最高点,当a越大时,抛物线的开口越大.

3.二次函数y=ax2的图象可以通过列表、描点、连线三个步骤画出来.

教学反思

本节课的内容主要研究二次函数y=ax2在a取不同值时的图象,并引出抛物线的有关概念,再根据图象总结抛物线的有关性质.整个内容分成:(1)例1是基础;(2)在例1的基础之上引入例2,让学生体会a的大小对抛物线开口宽阔程度的影响;(3)例2及后面的练习探究让学生领会a的正负对抛物线开口方向的影响;(4)最后让学生比较例1和例2,练习归纳总结.

《二次函数的图象和性质数学教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式